
Devops
or:

H o w I
learned
to s to p
worrying

a n d
love the
Ops team

Mike Crute
@ m c r u t e

D eve lo p e r
a n d

S y s a d m i n

➡ what is devops?

➡ basic tools

➡ application deployment

➡ runtime monitoring

➡ debugging the application

What is devops?

Developers

.

➡ kinda strange

➡ love shiny new things

➡ always breaking my servers

Developers

Add features to the system

Operations

➡ pull the levers and push the buttons

➡ easily excited

➡ yell a lot during emergencies

➡ say “NO” ALL the time

Operations

keeps the system stable and
fast

D e v o p s

D e v o p s

➡ ops who think like devs

➡ devs who think like ops

enable the business

lowering the risk of change
through tools and culture

it’s about communication

useful at any size company

Basic tools

shared Version control

➡ Configs and code live in the same place

➡ anyone can see everything

➡ github and bitbucket are great for this

TESTING

➡ integration tests for the system

➡ integration tests for the infrastructure

➡ end to end tests for the system

Continuous integration

➡ big and visible

➡ show all the builds and tests

➡ can even use this to trigger releases

integration environments
➡ staging environment

➡ should look like production

➡ developers should be able to deploy here

➡ developers have root here

Application deployment

Tools of the trade

➡ configuration management tools

➡ package managers

configuration
➡ static configuration

➡ per environment config

➡ service locations

➡ secrets

deployment techniques
➡ by hand

➡ rsync

➡ bittorrent

➡ distribution package managers

scaling

➡ portable code

➡ isolate unrelated services

➡ switches/graceful degradation (Gargoyle)

Runtime monitoring

tools of the trade
➡ Log management (Splunk)

➡ realtime monitoring (NAGIOS)

➡ Statistics collection (Statsd, ganglia)

➡ visual/graphing tools (cacti, MRTG)

➡ scriptable interfaces (REST/CURL, SNMP)

logging
➡ isolation of subsystems / granular configuration

➡ use levels correctly

➡ grep is king

➡ session identification

don’t be prettylog

+--+
| D | 2012-07-28 07:51:38 | UCS | 6578 | 1922 |
|--|
credit_card.processor
<e>f7fbba6e0636f890e56fb...</e>
+--+

don’t be prettylog

./bin/de_prettylog.py

./bin/unpretty.py

./bin/wtfprettylog.py

exception tracking
➡ track all exceptions

➡ sentry

➡ new relic

➡ bug tracker integration

statistics

➡ provide statistical information when possible

➡ not everything has to be aggregated

nagios
➡ simple ping tests

➡ HTTP checks

➡ passive checks

➡ custom active checks

snmp
➡ standard collection interface

➡ can provide individual stats or collections of stats

➡ works nicely with cacti

➡ net-snmp is easy to extend

managing errors
➡ repetitive errors are death

➡ sometimes fixes aren’t possible without moving code

➡ have some way to silence errors temporarily

➡ continue logging silenced errors

debugging

tools of the trade
➡ grep

➡ mssh

➡ splunk

➡ filters / petit / artificial ignorance

➡ management interfaces

logging

➡ provide detailed log boxes for each role

➡ should log everything at debug level

➡ runs ~10% of production traffic

console

➡ interactive shell to poke the application

➡ interactive database shells

➡ should have read/write access

script everything
➡ common tasks should be scripted

➡ scripts should be runnable by support teams

➡ document your scripts

➡ commit those scripts

management interfaces

➡ empower users to solve their own problems

➡ don’t overwhelm them with details

➡ code moves should not be necessary

Questions?

Thank you

